Actions of the Neumann systems via Picard-Fuchs equations
نویسندگان
چکیده
The Neumann system describing the motion of a particle on an n-dimensional sphere with an anisotropic harmonic potential, has been celebrated as one of the best understood integrable systems of classical mechanics. The present paper adds a detailed discussion and the determination of its action integrals, using differential equations rather than standard integral formulas. We show that the actions of the Neumann system satisfy a Picard-Fuchs equation which in suitable coordinates has a rather simple form for arbitrary n. We also present an explicit form of the related Gauß-Manin equations. These formulas are used for the numerical calculation of the actions of the Neumann system.
منابع مشابه
On a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations
Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.
متن کاملPicard-Fuchs Ordinary Differential Systems in N = 2 Supersymmetric Yang-Mills Theories
In general, Picard-Fuchs systems in N = 2 supersymmetric Yang-Mills theories are realized as a set of simultaneous partial differential equations. However, if the QCD scale parameter is used as unique independent variable instead of moduli, the resulting Picard-Fuchs systems are represented by a single ordinary differential equation (ODE) whose order coincides with the total number of independe...
متن کاملSolving fuzzy differential equations by using Picard method
In this paper, The Picard method is proposed to solve the system of first-order fuzzy differential equations $(FDEs)$ with fuzzy initial conditions under generalized $H$-differentiability. Theexistence and uniqueness of the solution and convergence of theproposed method are proved in details. Finally, the method is illustrated by solving some examples.
متن کاملSupersymmetric Yang-Mills Theories
In general, Picard-Fuchs systems in N = 2 supersymmetric Yang-Mills theories are realized as a set of simultaneous partial differential equations. However, if the QCD scale parameter is used as unique independent variable instead of moduli, the resulting Picard-Fuchs systems are represented by a single ordinary differential equation (ODE) whose order coincides with the total number of independe...
متن کاملOn Sp_4 modularity of Picard--Fuchs differential equations for Calabi--Yau threefolds
Motivated by the relationship of classical modular functions and Picard–Fuchs linear differential equations of order 2 and 3, we present an analogous concept for equations of order 4 and 5.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000